278 research outputs found

    The observable prestellar phase of the IMF

    Full text link
    The observed similarities between the mass function of prestellar cores (CMF) and the stellar initial mass function (IMF) have led to the suggestion that the IMF is already largely determined in the gas phase. However, theoretical arguments show that the CMF may differ significantly from the IMF. In this Letter, we study the relation between the CMF and the IMF, as predicted by the IMF model of Padoan and Nordlund. We show that 1) the observed mass of prestellar cores is on average a few times smaller than that of the stellar systems they generate; 2) the CMF rises monotonically with decreasing mass, with a noticeable change in slope at approximately 3-5 solar masses, depending on mean density; 3) the selection of cores with masses larger than half their Bonnor-Ebert mass yields a CMF approximately consistent with the system IMF, rescaled in mass by the same factor as our model IMF, and therefore suitable to estimate the local efficiency of star formation, and to study the dependence of the IMF peak on cloud properties; 4) only one in five pre-brown-dwarf core candidates is a true progenitor to a brown dwarf.Comment: ApJ Letters, accepte

    Turbulence-Induced Relative Velocity of Dust Particles II: The Bidisperse Case

    Full text link
    We extend our earlier work on turbulence-induced relative velocity between equal-size particles (Pan and Padoan, Paper I) to particles of arbitrarily different sizes. The Pan and Padoan (PP10) model shows that the relative velocity between different particles has two contributions, named the generalized shear and acceleration terms, respectively. The generalized shear term represents the particles' memory of the spatial flow velocity difference across the particle distance in the past, while the acceleration term is associated with the temporal flow velocity difference on individual particle trajectories. Using the simulation of Paper I, we compute the root-mean-square relative velocity, ^1/2, as a function of the friction times, tau_p1 and tau_p2, of the two particles, and show that the PP10 prediction is in satisfactory agreement with the data, confirming its physical picture. For a given tau_p1 below the Lagrangian correlation time of the flow, T_L, ^1/2 as a function of tau_p2 shows a dip at tau_p2~tau_p1, indicating tighter velocity correlation between similar particles. Defining a ratio f=tau_pl/tau_ph, with tau_pl and tau_ph the friction times of the smaller and larger particles, we find that ^1/2 increases with decreasing f due to the generalized acceleration contribution, which dominates at f<1/4. At a fixed f, our model predicts that ^1/2 scales as tau_ph^1/2 for tau_p,h in the inertial range of the flow, stays roughly constant for T_L <tau_ph < T_L/f, and finally decreases as tau_ph^-1/2 for tau_ph>>T_L/f. The acceleration term is independent of the particle distance, r, and thus reduces the r-dependence of ^1/2 in the bidisperse case.Comment: 23 pages, 12 figures, Accepted to Ap

    On star formation in primordial protoglobular clouds

    Get PDF
    Using a new physical model for star formation (Padoan 1995) we have tested the possibility that globular clusters (GCs) are formed from primordial mass fluctuations, whose mass scale (10810^8 - 10910^9 M⊙_{\odot}) is selected out of a CDM spectrum by the mechanism of non-equilibrium formation of H2H_2. We show that such clouds are able to convert about 0.003 of their total mass into a bound system (GC) and about 0.02 into halo stars. The metal enriched gas is dispersed away from the GC by supernova explosions and forms the galactic disk. These mass ratios between GCs, halo and disk depend on the predicted IMF which is a consequence of the universal statistics of fluid turbulence. They also depend on the ratio of baryonic over non-baryonic mass ,XbX_b, and are comparable with the values observed in typical spiral galaxies for Xb≈0.1−0.2X_b \approx 0.1-0.2. The computed mass and radius for a GC ( 5×1055\times 10^5 M⊙_{\odot} and 30 pc) are in good agreement with the average values in the Galaxy. The model predicts an exponential cut off in the stellar IMF below 0.1 M⊙_{\odot} in GCs and 0.6 M⊙_{\odot} in the halo. The quite massive star formation in primordial clouds leads to a large number of supernovae and to a high blue luminosity during the first two Gyr of the life of every galaxy

    Infall-Driven Protostellar Accretion and the Solution to the Luminosity Problem

    Full text link
    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall rates from protostar to protostar, and large fluctuations during the evolution of individuals protostars. In most cases, the infall rate is initially of order 10−5^{-5}\msun\ yr−1^{-1}, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed. The simulation reproduces well the observed characteristic values and scatter of protostellar luminosities and matches the observed protostellar luminosity function. The luminosity problem is therefore solved once realistic protostellar infall histories are accounted for, with no need for extreme accretion episodes. These results are based on a simulation of randomly-driven magneto-hydrodynamic turbulence on a scale of 4pc, including self-gravity, adaptive-mesh refinement to a resolution of 50AU, and accreting sink particles. The simulation yields a low star formation rate, consistent with the observations, and a mass distribution of sink particles consistent with the observed stellar initial mass function during the whole duration of the simulation, forming nearly 1,300 sink particles over 3.2 Myr.Comment: 21 pages, 16 figures, accepted for publication in Ap
    • …
    corecore